Fig. 6. Percent deviation of calculated heat flow and fountain pressure with respect to the observed quantities as a function of the reduced temperature parameter $(T_1 - T_0)/(T_{\lambda} - T_0)$ for various values of the initial temperature T_0 ; $d = 3.36 \,\mu$; solid curves: $\mathbf{x} =$ heat flow, $\dot{\mathbf{Q}}$; dashed curves: $\mathbf{x} =$ fountain pressure, $P_{\mathbf{f}}$. 村 cability of Eq. (14), relating $P_{\mathfrak{f}}$ to $\bar{\mathfrak{q}}$, as determined in the experiments under consideration. Another way of comparing the character of P_t and that of $\dot{\mathbf{Q}}$ is to examine the ΔT (as a function of T_0) at which the experimental points for P_t and $\dot{\mathbf{Q}}$ deviate from the linear behavior (denoted by $\Delta T_c = T_1 - T_0$). Figure 7 shows the results for the 3.36 μ slit. For the P_t measurements it is quite clear from Fig. 4 of II that reliable estimates of ΔT_c may be made by visual inspection of the curves. The same is true for $\dot{\mathbf{Q}}$ when $T_0 > 1.5^{\circ}\mathrm{K}$ (see Fig. 7 of I); for $T_0 <$